

Characterization of the IC2 auto antigen on pancreatic beta cells

Presented By: Md Golam Kafi Afrose Mia

Background

In type-1 diabetes (TID), insulin-producing beta cells are mainly destroyed by an autoimmune process and the pancreas is unable to produce insulin. IC2, a unique beta-cell surface specific monoclonal autoantibody that raised from LPS-stimulated spleen cell of a diabetic BB-rat. The IC2 auto antigen (here sulfatide epitope) might involve to inactivate SNARE proteins as well as pathogenesis in TID.

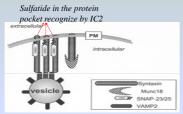


Figure- SNARE proteins and their function in insulin secretion also dis-regulated by Sulfatide.

Hypothesis

To make confirm that Sulfatide on the pancreatic beta cell plasma membrane is the target epitope for IC2

Materials and methods

TLC and HPTLC methods were applied with different cell (RIN-5AH, ? TC19, RBL, AR42J and IC2 hybridoma cells) lipids. Lipid separation bands were detected using various chemical staining process (Primulin, Orcinol, Thymol, Carbazole, Cu-acetate and Fluorescence) as well as immuno blotting process.

Result and discussion

Fig- HPTLC bands of both IC2 lipids (left) and RIN 5AH lipids are shown by using normal chemical staining

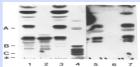


Fig- RINm5F glycolipids were isolated, separated by TLC. Bands are shown by applying orcinol staining (lane 1-4) and immunostaining by IC2 (lane 5-7). Here, the position of human Brain chromatographic Standards galactosyl Sulfatide, ganglioside GM-1b ganglioside GT-1b are indicate by A-C respectively. (*) denotes the origin. Lane 1 & 5 RINm5F total lipid extract. Lane 2 & 6 RINm5F Folch upper phase's lipids. Lane 3&7 RINm5F Folch lower phase's lipid. Lane 4 human Brain glycolipid. (Fig-1 Spitalnik et al, 1991)

Conclusion

Further research on immunological detection is needed to confirm that Sulfatide on the pancreatic beta cell plasma membrane is the target epitope for IC2.

Acknowledgement

I am really grateful to associate professor Carl-Henrik Brogren, Dept. Of biomedical science, Institute of PANUM, Copenhagen university, Denmark, for his excellent supervision and very important support since my arrival in Copenhagen.