

The effects of prenatal hypoxia on the α-subunits of G proteins in the heart of the Broiler chicken

Nabil Rashdan Supervisors: Isa Lindgren & Jordi Altimiras Molecular Genetics & Physiology MSc program 2010

Background

- β -adrenoceptors (β ARs) are essential for cardiac development and regulation.
- Chronic prenatal hypoxia increases βAR sensitivity to epinephrine in the embryo but Decreases it in the juvenile without changing receptor density in either.
- Others suggest that a shift in G-protein subtype expression favouring inhibitory (G_αi) G-proteins could effect βAR sensitivity.

Objective

To evaluate if embryonic and juvenile cardiac $G_{\alpha}s/G_{\alpha}i$ expression is altered by prenatal hypoxia.

Hypothesis

Because the β_2 AR subtype is known to signal through both stimulatory and inhibitory Gproteins, the hypothesis is that $G_{\alpha}s$ would increase in the hypoxic embryos, while $G_{\alpha}i$ would increase in the prenatally hypoxic juveniles.

Methods

- Broiler chicken eggs were incubated in 21%
- Oxygen (control) and 14% Oxygen (hypoxia).
- Embryonic samples were taken at 19 days of incubation. n= 16.
- Juvenile samples were taken at 35 days post hatching. n= 20.

Conclusions

• Unexpectedly hypoxia increased $G_{\alpha}i$ in the embryo, while having no effect on $G_{\alpha}s$. • Chronic prenatal hypoxia increased $G_{\alpha}s$ in juvenile chickens, with no change in $G_{\alpha}i$. • This suggests the effects of hypoxia are downstream of the G proteins in the signalling cascade.

- Samples were separated by SDS-PAGE and transferred onto PVDF membranes.
- Membranes were probed with either anti- $G_{\alpha}s$ or anti- $G_{\alpha}i$ antibodies.

Results

Perspective

• Others suggest that AC isoforms vary in their susceptibility to inhibition by $G_{\alpha}i$, and their sensitivity to $G_{\alpha}s$. And changes AC isoforms levels could have an effect on β AR sensitivity.

Acknowledgements

I would like to thank my supervisors for their invaluable help and guidance without which this project would not be possible .