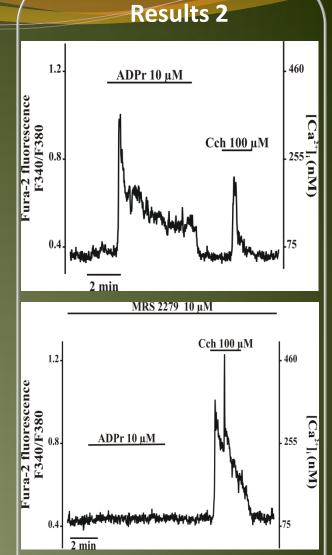

Background

* Increase in the cytosolic Ca²⁺ concentration ($[Ca^{2+}]_i$) in the pancreatic β-cells leads to insulin secretion. Tolbutamide is known to increase the $[Ca^{2+}]_i$ by closing the K_{ATP} channels leading to depolarization of the β-cells and opening of the voltage gated Ca²⁺ channels. It is unclear whether transient receptor potential (TRP) channels are involved in this process.


The mechanism by which the extracellular adenosine diphosphate ribose (ADPr) increases the [Ca²⁺]_i is currently unknown.

Aim

- To study whether the TRP channels are involved in tolbutamide-induced [Ca²⁺]_i increase.
- To identify the surface receptor involved in the ADPr-induced Ca²⁺ increase.

Capsazepine, a selective inhibitor for TRPV1 channel inhibited the tolbutamide-induced [Ca²⁺]_i increase

MRS2279 a selective inhibitor for P2Y1 receptor inhibited the ADPr-induced $[Ca^{2+}]_i$ increase

Materials and methods

 A highly differentiated rat insulinoma cell line (S5) that was subcloned from INS-1E cells were used as model for β-cells.

The [Ca²⁺]_i changes was measured by Fura-2-based single cell ratiometric microfluorometry using Fura-2.

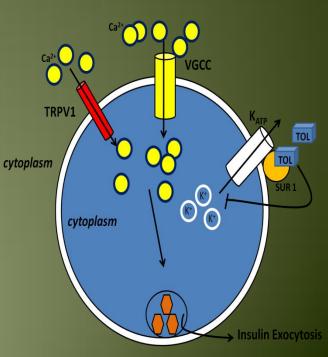
Conclusion

 Depolarization of β-cells by tolbutamide requires Ca²⁺ entry through TRPV1 channels.

ADPr increases [Ca²⁺]_i in beta cells by activating the P2Y1 receptors.

Acknowledgements

I thank my supervisor Md. Shahidul Islam and Amanda Jabin Fågelskiöld for providing me practical guidance and knowledge in the field of microfluorometry.



kalkr401@student.liu.se

Role of TRPV1 channel and P2Y1 receptor in Ca²⁺ signalling in β-cells: A study by single cell microfluorometry

> Kalaiselvan Krishnan M.Sc program Molecular genetics and physiology (2011)

