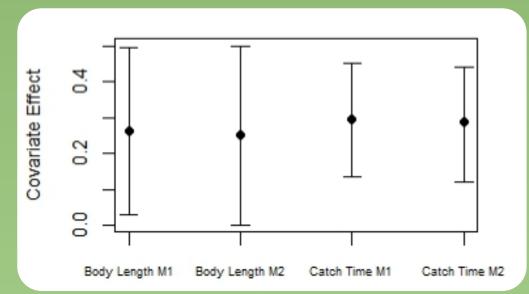
Dispersal in rare habitats

Dispersive trait expression of *Asellus aquaticus* in a rare cave habitat

Master's thesis, Ecology and the Environment 2016 Martin Brengdahl

Supervisors: Anders Hargeby & Tom Lindström

Background


Dispersal affects several ecological and evolutionary processes, such as escape from competition, inbreeding, genetic drift and effects from environmental fluctuations. In rare, aggregated habitats, selection could disfavour dispersal.

Aim:

- Gain further insight into dispersal by investigating assumed dispersive traits from rare habitats.
- Link morphological traits to dispersion.

Results

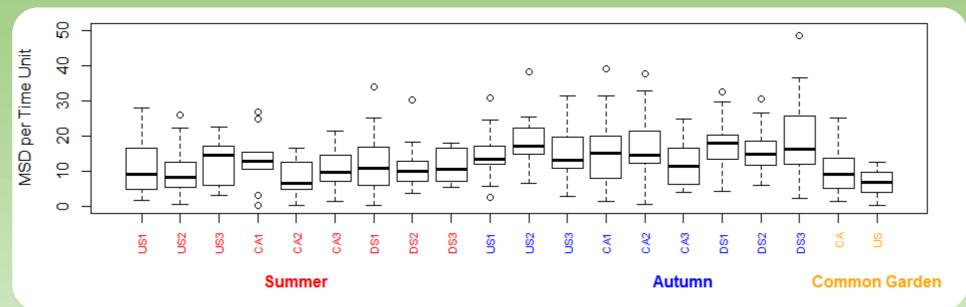
- Analysis was inconclusive in regards to differences in dispersal abilities between cave and surface phenotypes.
- Body size had positive correlation with dispersal.
- Catchment period influenced dispersal.

Body length and catchment period had >95 % credibility of having a positive effect on dispersal according to their respective models with best fit (M1 and M2).

Methods

Isopods (Asellus aquaticus) from Cave Lummelunda and its adjacent water bodies up- and downstream were collected in June and October. First generation common garden animals were also used.

Dispersal experiments were conducted in half-pipes, recording net displacement and time. IR-equipment was used for visualization, enabling dark conditions. Morphological measurements were done on all specimens.


Bayesian inference was used to analyse data in a hierarchical model approach, using both individual and population parameters.

Conclusion

- Large variation in dispersal at individual, location and phenotypic level.
- Positive correlation of body size on dispersal was unsurprising, but indicates that the analysis was able to identify factors which affects dispersal.
- Methods adjusted for the discontinuous movement of the animals are needed to investigate dispersal differences between the two phenotypes.

Results from the dispersal experiments showed large variation within locations. US = Upstream, CA=Cave, DS=Downstream. MSD as cm² • s⁻¹.

Contact: marbr845@student.liu.se IFM Biology, Linköping University