References
ArtDatabanken. (2015). Rödlistade arter i Sverige 2015. Uppsala: Artdatabanken SLU .
Artportalen. (2016). Artportalen - Rapportsystem för växter, djur och svampar. Retrieved 03 24, 2016, from https://www.artportalen.se/
Baguette, M. (2003). Long distance dispersal and landscape occupancy in a metapopulation of the cranberry fritillary bytterfly. Ecography 26, 153 - 160.
Baguette, M., Petit, S., & Quéva, F. (2000). Population spatial structure and migration of three butterfly species within the same habitat network: consequences for conservation. Journal of Applied Ecology 37, 100 - 108.
Bale, J., Masters, G., Hodkinson, I., Awmack, C., Bezemer, T., Brown, V., . . . Whittaker, J. (2002). Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biology 8, 1 - 16.
Bennett, N. L., Severns, P. M., Parmesan, C., & Singer, M. C. (2015). Geographic mosaics of phenology, host preference, adult size and microhabitat choice predict butterfly resilience to climate warming. Oikos 124, 41 - 53.
Blomqvist, M. (2010). Inventering av dagaktiva fjärilar i artrika vägkanter utefter allmänna vägar i Västra Götalands län och Hallands län. ISBN:978-91-7467-078-3: Trafikverket.
Buckley, J., Butlin, R., & Bridle, J. (2012). Evidence for evolutionary change associated with the recent range expansion of the British butterfly, Aricia agestis, in response to climate change. Molecular Ecology 21, 267 - 280.
Burrough, P., & McDonnell, R. (1998). Principles of Geographical Information Systems. Oxford University Press, 190.
Börschig, C., Klein, A.-M., von Wehrden, H., & Krauss, J. (2013). Traits of butterfly communities change from specialist to generalist characteristics with increasing land-use intensity. Basic and Applied Ecology 14, 547 - 554.
Cassel-Lundhagen, A., & Sjögren-Gulve, P. (2007). Limited dispersal by the rare scarce heath butterfly - potential consequences for population persistence. Journal of Insect Conservation 11, 113 - 121.
Chapman , J., Nesbit, R., Burgin, L., Reynolds, D., Smith, A., Middleton, D., & Hill, J. (2010). Flight Orientation Behaviors Promote Optimal Migration Trajectories in High-Flying Insects. Science 327, 682 - 685.
Chen, I.-C., Hill, J., Ohlemüller, R., Roy, D., & Thomas, C. (2011). Rapid Range Shifts of Species Associated with High Levels of Climate Warming. Science 333, 1024 - 1026.
Coe, R. (2002). It's the Effect Size, Stupid. What effect size is and why it is important. Retrieved 03 13, 2017, from http://www.leeds.ac.uk/educol/documents/00002182.htm
Cook, M. L., Dennis, L. R., & Hardy, B. P. (2001). Butterfly-hostplant fidelity, vagrancy and measuring mobility from distribution maps. Ecography 24, 497-504.
Dapparto, L., & Dennis, R. (2013). The generalist-specialist continuum: Testing predictions for distribution and trends in British butterflies. Biological Conservation 157, 229 - 236.
Eilers, S., Pettersson, L., & Öckinger, E. (2013). Micro-climate determines oviposition site selection and abundance in the butterfly Pyrgus armoricanus at its northern range margin. Ecological Entomology 38, 183 - 192.
Eliasson, C., Ryrholm, N., Holmer, M., Jilg, K., & Gärdenfors, U. (2005). Nationalnyckeln till Sveriges flora och fauna. Fjärilar: Dagfjärilar. Hesperiidae - Pyrgus. Uppsala: Artdatabanken, SLU.
Estrada, A., Miereles, C., Morales-Castilla, I., Poschlod, P., Vieites, D., Araújo, M., & Early, R. (2015). Species´ intrinsic traits inform their range limitations and vulnurability under environmental change. Global Ecology and Biogeography 24, 849 - 858.
Estrada, A., Morales-Castilla, I., Caplat, P., & Early, R. (2016). Usefulness of Species Traits in Predicting Range Shifts. Trends in Ecology and Evolution 31, 190 - 203.
Fourcade, Y., & Öckinger, E. (2017). Host plant density and patch isolation drive occupancy and abundance at a butterfly's northern range margin. Ecology and Evolution 7, 331-345.
Fric, Z., Hula, V., Klimova, M., Zimmermann, K., & Konvicka, M. (2010). Dispersal of four butterflies within identical landscape. Ecological Research, 25, 543 - 552.
Gudmunson, S., Eklöf, A., & Wennergren, U. (2015). Environmental variability uncovers disruptive effects of species' interactions on population dynamics. Proceedings Royal Society B, 282.
Gutiérrez, D., León-Cortés, J., Menéndez, R., & Wilson, R. (2001). Metapopulations of four Lepidopteran Herbivores on a Single Host Plant, Lotus corniculatus. Ecology 82, 1371 - 1386.
Hanski, I. (1998). Metapopulation dynamics. Nature 396, 41-49.
Harrell, F. E., & Dupont, C. (2016). Harrell Miscellaneous. R package version 4.0-0.
Hellmann, F., Alkemede, R., & Knol, O. (2016). Dispesal based climate change sensitivity scores for European species. Ecological Indicators 71, 41-46.
Hickling, R., Roy, D., Hill, J., Fox, R., & Thomas, C. (2006). The distribution of a wide range of taxonomic groups are expanding polewards. Global Change Biology 12, 450 - 455.
Hovestadt, T., Binzenhöfer, B., Nowicki, P., & Settele, J. (2011). Do all inter-patch movements represent dispersal? A mixed kernel study of butterfly mobility in fragmented landscape. Journal of Animal Ecology 80, 1070 - 1077.
Jordbruksverket. (2005). Ängs- och betesmarksinventeringen 2002 - 2004. Rapport 2005:1. Jordbruksverket.
Kharouba, H., Paquette, S., Kerr, J., & Vellend, M. (2014). Predicting the sensitivity of butterfly phenology to temperature over the past century. Global Change Biology 20, 504 - 514.
Konvicka, M., Maradova, M., Benes, J., Fric, Z., & Kepka, P. (2003). Uphill shifts in distribution of butterflies in th eCzech Republic: effects of changing climate detected on a regional scale. Global Ecology & Biogeography 12, 403 - 410.
Kuras, T., Benes, J., Fric, Z., & Konvicka, M. (2003). Dispersal patterns of endemic alpine butterflies with contrasting population structure: Erebia epiphron and Erebia sudetica. Population Ecology 45, 115 - 123.
Kuussaari, M., Heikkinen, R., Heliölä, J., Louto, M., Mayer, M., Rytteri, S., & von Bagh, P. (2015). Successful translocation of the threatened Clouded Apollo butterfly (Parnassius mnemosyne) and metapopulation establihsment in southern Finland. Biological Conservation 190, 51-59.
Kuussaari, M., Saccheri, I., Canara, M., & Hanski, I. (1998). Allee effect and population dynamics in the Glanville fritillary butterfly. Oikos 82, 384 - 392.
Kwon, T.-S., Lee, C., & Kim, S.-S. (2014). Northward range shifts in Korean butterflies. Climatic Change 126, 163 - 174.
Lantmäteriet. (2016). Product description: GSD-Elevation data, grid 50 + nh, Document version 1.1. GSD Geografiska Sverigedata, Lantmäteriet.
Lehsten, V., Sykes, M., Scott, A., Tzanopoulos, J., Kallimanis, A., Mazaris, A., . . . Vogiatzakis, I. (2015). Disentangling the effects of land-use change, climate and CO2 on projected future European habitat types. Global Ecology and Biogeography 24, 653 - 663.
Lewthwaite, J., Debinski, D., & Kerr, J. (2017). High community turnover and dispersal limitation relative to rapid climate change. Global Ecology and Biogeography 26, 459 - 471.
Lindström, T., Håkansson, N., Westerberg, L., & Wennergren, U. (2008). Splitting the tail of the displacement kernelshows the unimportance of kurtosis. Ecology 89, 1784 - 1790.
Lindström, T., Sisson, S., Nöremark, M., Jonsson, A., & Wennergren, U. (2009). Estimation of distance related probability of animal movements between holdings and implications of disease spread modeling. Preventive Veterinary Medicine 91, 85 - 94.
Loarie, S., Duffy, P., Hamilton, H., Asner, G., Field, C., & Ackerly, D. (2009). The velocity of climate change. Nature 462, 24 - 31.
Lundberg, P., Ranta, E., Ripa, J., & Kaitala, V. (2000). Population variability in space and time. Trends in Ecology and Evolution, 15, 460 - 464.
Luftwebb, S. (2016). Nationell kartläggning av atmosfärskemiska data för Sveriges miljöövervakning är framtaget av SMHI på uppdrag av Naturvårdsverket. Retrieved 11 10, 2016, from http://luftweb.smhi.se/
Lögdberg, F. (2011). Population dynamics in variable environments - impacts of noise colour and synchrony. Linköping: Linköping Studies in Science and Technology, Dissertion No.1416. ISBN 978–91–7393–001–7.
Mair, L., Thomas, C., Anderson, B., Fox, R., Botham, M., & Hill , J. (2012). Temporal variation in responses of species to four decades of climate change. Global Change Biology 18, 2439 - 2447.
Martay, B., Monteith, D., Brewer, M., Brereton, T., Shortall, C., & Pearce-Higgins, J. (2016). An indicator highlights seasonal variation in the response of Lepidoptera communities. Ecological Indicators.
Mason, S., Palmer, G., Fox, R., Gillings, S., Hill, J., Thomas, C., & Oliver , T. (2015). Geographical range margins of many taxonomic groups continue to shift polewards. Biological Journal of the Linnean Society 115, 586 - 597.
Melero, Y., Stefanescu, C., & Pino, J. (2016). General declines in Mediterranean butterflies over the last two decades are modulated by species traits. Biological Conservation 201, 336 - 342.
Nurmi, T., Parvinen, K., & Selonen, V. (2017). The evolution of site-selection strategy during dispersal. Journal of Theoretical Biology.
Nadarajah, S. (2005). A generalized normal distribution. Journal of Applied Statitics, 32:7, 685 - 694.
Nollbrant, P. (2010). Gaddsteklar i vägrenar längs väg 0549 (gamla riksväg 40) - Mellan Landvetter och Rya i Härryda kommun. Rapport 2010:103. ISBN: 978-91-7467-077-6: Trafikverket.
Nollbrant, P. (2012). Vildbin och fjärilar i vägkanter - Driftområde Ätradalen 2011. Rapport 2012:066. ISBN: 978-91-7467-263-3: Trafikverket.
Oliver, T., Marshall, H., Morecroft, M., Brereton, T., Ptudhomme, C., & Huntingford, C. (2015). Interacting effects of climate change and habitat fragmentation on drought-sensitive butterflies. Nature Climate Change 5, 941 - 944.
Omann, I., Stocker, A., & Jäger, J. (2009). Climate change as a threat to biodiversity: An application of the DPSIR approach. Ecological Economics 69, 24 - 31.
Pacifici, M., Foden, W., Visconti, P., Watson, J., Butchart, S., Kovacs, K., . . . Rondinini, C. (2015). Assessing species vulnerability to climate change. Nature climate change 5, 215 - 225.
Parmesan, C., & Yoha, G. (2003). A globally coherent fingerprint of climate change impacts across natural ecosystems. Nature 421, 37 - 42.
Parmesan, C., Ryrholm, N., Stefanecu, C., Hill, J., Thomas, C., Descimon, H., . . . Warren, M. (1999). Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 10, 579 - 583.
Pateman, R., Hill, J., Roy, D., & Thomas, C. (2012). Temperature-Dependent Alterations in Host Use Drive Range Expansion in a Butterfly. Science 336, 1028 - 1030.
Pearson, R. (2006). Climate change and the migration capacity of species. Trends in Ecology and Evolution 21, 111 - 113.
Pearson, R., Stanton, J., Shoemaker, K., Aiello-Lammens, M., Ersts, P., Horning, N., . . . Akcakaya, R. (2014). Life history and spatial traits predict extinction risk due to climate change. Nature Climate Change 4, 217 - 221.
Persson, K. (2005). Ängs- och betesmarksinventeringen - inventeringsmetod. Rapport 2005:2. Jordbruksverket, Miljöenheten.
Persson, K. (2005). Ängs- och betesmarksinventeringen 2002 - 2004. Rapport 2005:1. Jordbruksverket, Miljöenheten.
Pettersson, L., & Franzén, M. (2009). Storfjärilar som ökar sin utbredning: nytillskotten i storfjärilfaunan i sydligaste Sverige under perioden 1973 - 2009. Entomologisk Tidskrift 123, 199 - 207.
Pulliam, H. (1988). Sources, sinks, and population regulation. The American Naturalist 132, 652 - 661.
Pöyry, J., Leinonen, R., Söderman, G., Nieminen, M., Heikkinen, R., & Carter, T. (2011). Climate-induced increase of moth multivoltinism in boreal regions. Global Ecology and Biogeography 20, 289 - 298.
Pöyry, J., Luoto, M., Heikkinen, R., Kuussaari, M., & Saarinen, K. (2009). Species traits explain recent range shifts of finnish butterflies. Global Change Biology 15, 732 - 743.
Rabasa, S., Gutiérrez, D., & Escudero, A. (2007). Metapopulation structure and habitat quality in modelling dispersal in the butterfly Iolana iolas. Oikos 116, 793 - 806.
Roughgarden, J. (1975). A simple Model for Population Dynamics in Stochastic Environments. The American Naturalist 109, 713 - 736.
Runesson, K., Lund, S., Enetjärn, A., Lennartsson, T., & Larsson, M. (2012). Vegetation och flora i vägkanter - effekter av olika metoder för skötsel och underhåll. Kunskapssammansättning. CBM:s skriftserie 63. Centrum för biologisk mångfald.
Sala, O., Chapin, F., Armesto, J., Berlow, E., Bloomfield, J., Dirzo, R., . . . Wall, D. (2000). Global Biodiversity Scenarios for the Year 2100. Science, New Series 287, 1770 - 1774.
Santini, L., Cornulier, T., Bullock, J., Palmer, S., White, S., Hodgson, J., . . . Travis, J. (2016). A trait-based approach for predicting species responses to environmental change from sparse data: how well might terrestial mammals track climate change? Global Change Biology 22, 2415 - 2424.
Schloss, C., Nuñez, T., & Lawler, J. (2012). Dispersal will limit ability of mammals to track climate change in the Western Hemisphere. PNAS 109.
Scholes, J., Betts, R., Bunn, S., Leadley, P., Nepstad, D., Overpeck, J., & Taboada, M. (2014). Terrestrial and inland water systems. In: Climate Change 2014: Impacts, Adaption, and Vulnerability. PartA: Global and Sectoral Aspects. Contribution of Working Group 2 to the Fifth Assessment Report of the INtergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York: Cambridge University Press.
Settele, J., Kudrna, O., Harpke, A., Kühn, I., Van Swaay, C., Verovnik, R., . . . Schweiger, O. (2008). Climatic Risk Atlas of European Butterflies (ISSN 1313-2652 (online) ed.). Pensoft Publishers.
Sgardeli, V., Zogradou, K., & Halley, J. (2016). Climate Change versus ecological drift: Assessing 13 years of turnover in a butterfly community. Basic and Applied Ecology 17, 283 – 290.
Sjökvist, E., Axén Mårtensson, J., Dahne, J., Köplin, N., Bjärck, E., Nylén, L., . . . Berggren Clausen, S. (2015). Klimatscenarioer för Sverige; Bearbetning av RCP-scenarier för meteorologiska och hydrologiska effektstudier. Klimatologi 15.
SMHI. (2014). Snabbguide till IPCC:s RCP-scenarier, AR5 WG1 2013-2014. SMHI, Naturvårdsverket.
Steffen, W., Rockström, J., & Costanza, R. (2011). How Defining Planetary Boundaries Can Transform Our Approach to Growth. Solutions: For A Sustainable & Desirable Future 2, 59 - 65.
Stevens, V. M., Turlure, C., & Baguette, M. (2010). A meta-analysis of dispersal in butterflies. Biological Reviews.
Tainio, A., Heikkinen, R., Heliölä, J., Hunt, A., Watkiss, P., Fronzek, S., . . . Carter, T. (2016). Conservation of grassland butterflies in Finland under a changing climate. Regional Environmental Change 16, 71 - 84.
Thuiller, W., Lavorel, S., Araújo, M., Sykes, M., & Prentice, I. (2005). Climate change threats to plant diversity in Europe. PNAS 102, 8245 - 8250.
Tobin, M., Nagarkatt, S., Loeb, G., & Saunders, M. (2008). Historical and projected interactions between climate change and insect voltinism in a multivoltine species. Global Change Biology 14, 951 - 957.
Urban, M. (2015). Accelerating extinction risk from climate change. Science 6234, 571 - 573.
Wahlberg, N., Klemetti, T., Selonen, V., & Hanski, I. (2002). Metapopulation structure and movements in five species of checkerspot butterflies. Oecologia 130, 33 - 43.
Van Dyke, H., & Baguette, M. (2005). Dispersal behaiour in fragmented landscapes: Routine or special movements? Basic and Applied Ecology 6, 535 - 545.
Warren, M., Hill, J., Thomas, J., Asher, J., Fox, R., Huntley , B., . . . Thomas, C. (2001). Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414, 65 - 69.
White, J., Rassweiler, A., Samhouri, J., Stier, A., & White, C. (2014). Ecologists should not use statistical significance tests to interpret simulation model results. Oikos 123, 385 - 388.
Wisz, M., Pottier, J., Kissling, D., Pellissier, L., Lenior, J., Damgaards, C., . . . Svenning, J.-C. (2013). The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biological reviews 88, 15 - 30.
Wolfgang, W. (n.d.). Lepidoptera and their ecology. Retrieved 03 20, 2017, from http://www.pyrgus.de/Pyrgus_armoricanus_en.html
Öckinger, E. (2006). Possible metapopulation structure of the threatened butterfly Pyrgus armericanus in Sweden. Journal of Insect Conservation 10, 43 - 51.
Öckinger, E., & Smith, H. (2007). Asymmetric dispersal and survival indicate population sources for grassland butterflies in agricultural landscapes. Ecography 30, 288 - 298.
Öckinger, E., Bergman, K.-O., Franzén, M., Kadlec, T., Krauss, J., Kuussari, M., . . . Bommarco, R. (2012). The landscape matrix modifies the effect of habitat fragmentation in grassland butterflies. Landscape Ecology 27, 121-131.
Responsible for this page:
Director of undergraduate studies Biology
Last updated:
05/11/17