Hide menu

  1. Dennis, D. T., and Emes, M. J. (1990). Regulation by compartmentation in plant physiology. In: Dennis DT, Turpin DH. , editors. Biochemistry and Molecular Biology. Harlow, UK: Longman. 45–55.

  2. Eastmond, P. J., and Rawsthorne, S. (2000). Coordinate changes in carbon partitioning and plastidial metabolism during the development of oilseed rape embryos. Plant Physiol. 122 :767–774.

  3. Busman, L., Lamb, J., Randall, G., Rehm, G., and Schmitt, M. (2002). The nature of phosphorus in soils.

  4. Abel, S. , Carla, A., Ticconi and Delatorre, C. A. ( 2001). Phosphate sensing in higher plants. Physiologia Plantarum. 115, 1: 1-8.

  5. Plaxton, W. C., Carswell, M. C., Lerner, H. R.,   Plant Responses to Environmental Stresses: From Phytohormones to Genome Reorganization. NY: Marcel Dekker; 1999. Metabolic aspects of the phosphate starvation response in plants; pp. 349–372.

  6. http://www.nsf.gov/pubs/2002/bio0202/model.htm

  7. http://www.ncbi.nlm.nih.gov/About/model/otherorg.html

  8. http://www.arabidopsis.org/portals/education/aboutarabidopsis.jsp

  9. Buchanan, B. B., Gruissem, W., Jones, R. L. (2001). Biochemistry and molecular biology of plants. Rockville: American Society of Plant.

  10. Kirk, J., and Rae, T. B. (1978). Proplastids, etioplasts, amyloplasts, chromoplasts and other plastids. In JTO Kirk, RAE Tilney-Bassett, eds, The Plastids. Their Chemistry, Structure, Growth and Inheritance, Ed 2. Elsevier/North-Holland, Amsterdam. 219-249.

  11. Journet, E. P., and Douce, P. (1985). Enzymic Capacities of Purified Cauliflower Bud Plastids for Lipid Synthesis and Carbohydrate Metabolism. Plant Physiol. 79:458-467.

  12. Mifun, J. M., and Beevers, H. (1974). Isolation of intact plastids from a range of plant tissues. Plant Physiol. 53: 870-874.

  13. Macdonald, F. D., and ApRees, T. (1983). Enzymic properties of amyloplasts from suspension cultures of soybean. Biochem Biophys Acta 755: 81-89.

  14. Nishimura, M., and Beevers, H. (1978). Isolation of intact plastids from protoplasts from castor bean endosperm. Plant Physiol. 62: 40-43.

  15. ApRees, T., Green, J. H., and Wilson, P. M. (1985). Pyrophosphate: fructose-6-phosphate-1-phosphotransferase and glycolysis in non-photosynthetic tissues of higher plants. Jour of Biochem. 227: 299-304.

  16. Mills, W. R., and Joy, K. W. (1980). A rapid method for isolation of purified, physiologically active chloroplasts, used to study the intracellular distribution of amino acids in pea leaves. Planta. 148, 1: 75-83.

  17. Percoll Product information, Sigma, U.S.A.

  18. Penghui , Ai . , Shubin , S. , Jianning, Z. , Xiaorong, F. , Weijie, X. , Qiang, G. , Ling, Y. , Qirong, S. , Ping, W. , Anthony, J. M.,   and Guohua, X. (2008). Two rice phosphate transporters, OsPht1;2 and OsPht1;6, have different functions and kinetic properties in uptake and translocation. The Plant Journal. 57, 5: 798 – 809 .

  19. Flugge, U., Hausler, R. E., Ludewig, F., and Fischer, K. (2003). Functional genomics of phosphate antiport systems of plastids. Physiologia Plantarium. 118: 475-482.

  20. Stitt, M., and ApRees, T. (1979). Capacities of pea chloroplasts to catalyse the oxidative pentose phosphate pathway and glycolysis. Phytochem 18: 1905–1911

  21. Liedvogel, B., and Bauerle, R. (1986). Fatty acid synthesis in chloroplasts from mustard cotyledons: formation of acetyl coenzyme A by intraplastid glycolytic enzymes and a pyruvate dehydrogenase complex. Planta. 169: 481–489

  22. Fischer, K., and Weber, A. (2002). Transport of carbon in non-green plastids. Trends Plant Sci. 7: 345–351.

  23. Crawford, N. M., Meyerowitz, E. M., Somerville, C. R. (1994). Arabidopsis, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York. 1119-1146.

  24. Bun-ya, M., Nishimura, M., Harashima, S., and Oshima, Y. (1991). The PHO84 gene of Saccharomyces cerevisiae encodes an inorganic phosphate transporter. Mol.Cell.Biol. 11, 3229-3238.

  25. Leggewie, G., Willmitzer, L., and Riesmeier, J. W. (1997). Two cDNAs from potato are able to complement a phosphate uptake-deficient yeast mutant: Identification of phosphate transporters from higher plants. Plant Cell. 9, 381-392.

  26. Kai, M., Masuda, Y., Kikuchi, Y., Osaki, M., and Tadano, T. (1997). Isolation and characterization of a cDNA from Catharanthus roseus which is highly homologous with phosphate transporter, Soil Sci. Plant Nutr. 43, 227-235.

  27. Liu, C., Muchhal, U. S., Uthappa, M., Kononowicz, A. K., and Raghothama, K. G. (1998). Tomato phosphate transporter genes are differentially regulated in plant tissues by phosphorus. Plant Physiol. 116: 91-99.

  28. Guo, B., Jin, Y., Wussler, C., Blancaflor, E. B., Motes, C. M., and Versaw, W. K. (2007). Functional analysis of the Arabidopsis PHT4 family of intracellular phosphate transporters. New Phytol. 177(4):889-98.

  29. Guo, B., Irigoyen, C., Fowler, T. and Versaw, W., K. (2008). Differential expression and phylogenetic analysis suggest specialization of plastid-localized members of the PHT4 phosphate transporter family for photosynthetic and heterotrophic tissues. Plant Signaling and Behavior. 3, 10: 1-7.

  30. Daram, P., Brunner, S., Rausch, C., Steiner, C., Amrhein, N., Bucher, M. (1999). Pht2;1 encodes a low affinity phosphate transporter from Arabidopsis. Plant Cell. 11:2153-66.

  31. Versaw, W. K., and Harrison, M. J. (2002). A chloroplast phosphate transporter, PHT2;1, influences allocation of phosphate within the plant and phosphate-starvation responses. Plant Cell. 14:1751-66.

  32. Zhao, L., Versaw, W. K., Liu, J., and Harrison, M. J. (2003). A phosphate transporter from Medicago truncatula is expressed in the photosynthetic tissues of the plant and is located in the chloroplast envelope. New Phytol. 157:291-302.

  33. Ferro, M., Salvi, D., Riviere-Rolland, H., Vermat, T., Seigneurin-Berny, D., and Grunwald, D. (2002).   Integral membrane proteins of the chloroplast envelope: identification and subcellular localization of new transporters. Proc Natl Acad Sci USA. 99:11487-92.

  34. Rausch, C., Zimmermann, P., Amrhein, N., Bucher, M. (2004). Expression analysis suggests novel roles for the plastidic phosphate transporter Pht2;1 in auto- and heterotrophic tissues in potato and Arabidopsis. Plant J. 39:13-28.

  35. Guo, B., Jin, Y., Wussler, C., Blacaflor, E. B., Motes, C. M., Versaw, W. K. (2008). Functional analysis of the Arabidopsis PHT4 family of intracellular phosphate transporters. New Phytol. 177:889-98.

  36. http://www.daviddarling.info/encyclopedia/C/Calvincycle.html .

  37. Pavón, L. R., Lundh, F., Lundin, B., Mishra, A., Persson, B. L., and Spetea, C. (2008). Arabidopsis ANTR1 Is a Thylakoid Na+-dependent Phosphate Transporter. J. Biol. Chem. 283, 20: 13520-13527.

  38. Roth, C., Menzel, G., Petetot, J. M., Rochat-Hacker, S., and Poirier, Y. (2004). Characterization of a protein of the plastid inner envelope having homology to animal inorganic phosphate, chloride and organic-anion transporters. Planta. 218: 406–416.

  39. Sturm, A., and Tang, G. Q. (1999). The sucrose –cleaving enzymes of plants are crucial for development, growth and carbon partitioning. Trends in Plant Science. 10, 1: 401-407.

  40. Attwood, T. K., and Parry-Smith, D. J. (1999). Introduction to bioinformatics. Genetical Research. 74: 201-202.

  41. Page, D. R. and Grossniklaus, U.   (2002). The art and design of genetic screens: Arabidopsis thaliana. Nature Reviews Genetics. 3 : 124-136.

  42. Taiz, L. and   Zeiger, E. (2006). Plant Physiology, fourth edition. Suderland. Sinauer Associates, Inc., Publishers.

  43. Microscope. (2009). In Encyclopaedia Britannica. Retrieved March 08, 2009, from Encyclopædia Britannica Online: http://www.britannica.com/EBchecked/topic/380582/microscope

  44. http://www.genome.gov/10000207

  45. http://www.expasy.ch/tools/

  46. Schwacke, R., Schneider, A., van der Graaff, E., Fischer, K., Catoni, E., Desimone, M., Frommer, W. B., Flügge, U. I., Kunze, R. 2003. ARAMEMNON, a novel database for Arabidopsis integral membrane proteins. Plant Physiol. 131(1): 16-26.

  47. Krogh, A., Larsson, B., von Heijne, G., and Sonnhammer, E. L. ( 2001). Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes.   J Mol Biol. 305, 3:567-80.

  48. Tusnády, G. E ., and Simon, I . ( 2001). The HMMTOP transmembrane topology prediction server. Bioinformatics . 17, 9:849-50.

  49. Finn, R. D., Mistry, J., Schuster-Bockler, B., Griffiths-Jones, S., Hollich, V., Lassmann, T., Moxon, S., Marshall, M., Khanna, A., Durbin, R., Eddy, S. R., Sonnhammer, E. L., and Bateman, A. (2006). "Pfam: clans, web tools and services". Nucleic Acids Res. 34: D247–D251.

  50. https://www.genevestigator.com/gv/index.jsp .

  51. www.nanodrop.com

  52. Lin, X., Kaul, S., Rounsley, S. D., Shea, T. P., Benito, M. I., Town, C. D., Fujii, C. Y., Mason, T. M., Bowman, C. L., Barnstead, M. E., Feldblyum, T. V., Buell, C. R., Ketchum, K. A., Lee, J. J., Ronning, C. M., Koo, H. L., Moffat, K. S., Cronin, L. A., and , Shen M., Pai G., Van Aken S., Umayam L., Tallon L.J., Gill J.E., Adams M.D., Carrera A.J., Creasy T.H., Goodman H.M., Somerville C.R., Copenhaver G.P., Preuss D., Nierman W.C., White O., Eisen J.A., Salzberg S.L., Fraser C.M., Venter, J. C. (1999). Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature. 402: 761-768.

  53. Rolland, N., Ferro, M., Seigneurin-Berny, D., Garin, J., Douce, R., and Joyard, J. (2003). Photosynth. Res. 78: 205–230.

  54. http://www.ccl.net/chemistry/resources/messages/1991/06/14.003-dir/index.html


Responsible for this page: Director of undergraduate studies Biology
Last updated: 05/20/09